Background

Olympiade belge d'Informatique

Concours de raisonnement informatique et d'initiation à la programmation pour élèves du secondaire.

Un concours accessible à tous

Le concours beOI a été rendu plus accessible qu'auparavant afin que tout élève du secondaire puisse y participer sans connaissance préalable.

Aucune base nécessaire

L'épreuve éliminatoire ne comporte pas de programmation, uniquement des exercices de raisonnement informatique ne nécessitant aucune connaissance préalable. La finale comporte, elle, de la programmation, via des codes à comprendre et à compléter sur papier.

Trois catégories d'âge

Le concours comporte maintenant trois catégories selon l'année de l'élève, chacune comportant son propre classement:

Cadet
2e secondaire et inférieur
Junior
3e et 4e secondaire
Senior
5e, 6e (et 7e) secondaire
Guidage

Les candidats passant les éliminatoires se verront proposer une formation et une série d'outils leur permettant d'apprendre les bases de la programmation. Les meilleurs pourront également intégrer la formation de l'équipe nationale (beCP).

Les résultats 2024

Éliminatoire
image

Éliminatoires 2024

Lieu et date

L'éliminatoire aura lieu la semaine du 5 au 9 février 2024 dans votre école (démarrage entre 8h00 et 15h30) ou le mercredi 7 février à 14h00 dans l'un des centres régionaux. L'épreuve dure 75 minutes, vous ne pouvez la passer qu'une seule fois.

Types de questions

Les éliminatoires se dérouleront sur ordinateur, sur la plate-forme habituelle.
Vous retrouverez ci-dessous quelques exemples de questions.

Visitez la plate-forme du concours afin de tester les tâches interactives de beOI.

Résultats

Calendrier 2023-2024

image

Finale 2024

Lieu et date

VUB Main Campus Etterbeek, Auditorium Q.
Boulevard de la Plaine 2, 1050 Bruxelles.
Samedi 23 mars 2024 à 13h30.
Plan montrant l'entrée 13, l'auditoire Q et les parking (lettres P)
Le parking le plus facile est au niveau du sol sous le bâtiment C (entrée entre les bâtiments B et C). Les participants qui souhaitent se garer sur le campus DOIVENT enregistrer leur plaque d'immatriculation. Le lien sera fourni par e-mail.

Aspects pratiques

Apportez un bic, un crayon, une gomme et rien d'autre.
Les sacs et téléphones seront posés sur l'estrade pendant le test.
ATTENTION ! L'épreuve commence à 13h30 et dure 2 heures.
Les finalistes sont attendus à 13h20.
Les résultats seront annoncés quelques semaines plus tard.

Types de questions

La finale se déroule sur papier. Vous pouvez consulter ci-dessous quelques exemples de questions et les questions des finales précédentes.

Soyez prévenu de la prochaine olympiade

Exemples de question pour la finale

Le language informatique utilisé dans les questionnaires est un pseudo-code défini dans ce document.

  • Double 1

    Votre tâche est d’écrire une fonction qui double tous les “1” dans un tableau de n nombres. Par exemple, si le tableau contient [1,1,5,1,4]avant l’appel de la fonction,il devra contenir [1,1,1,1,5,1,1,4] après l’appelàcelle-ci. Pour simplifier les choses, le tableau qui vous est fourni a une taille 2n, ce qui permet de modifier le tableau sans devoir en créer un nouveau.

    Voici la définition des entrées et de la sortie de l’algorithme.

    Input : n, un nombre entier.
            tab, un tableau de nombres entiers de taille 2n.
    Output: tab est modifié pour que tous les 1 parmi les n premiers nombres du 
            tableau initial soient doublés. 
    

    Nous vous proposons deux algorithmes permettant de résoudre ce même problème, vous devez les compléter.

    Algorithme 1
    count <-- 0
    for (i <-- 0 to ... step 1)                // (a)
    {
      if (tab[...] = 1)                        // (b)
      {
        for (j <-- ... to i+1 step -1)         // (c)
        {
          tab[...] <-- tab[...]                // (d), (e)
        }
        count <-- count + 1
      }
    }
    

    Complétez (a), (b), (c), (d) et (e).

    Algorithme 2
    count <-- 0
    for (i <-- 0 to n-1 step 1)
    {
      if (tab[i] = 1) 
      {
        count <-- count + 1  
      }
    }
    for (j <-- ... to ... step ...)   // (f), (g), (h)
    {
      ...                             // (i)
      if (tab[j] = 1) 
      {
        tab[j+...] <-- 1              // (j)  
        count <-- count - 1
      }
    }
    

    Complétez (f), (g), (h), (i) et (j).

    En sachant que l’algorithme 1 prend environ 8 minutes pour s’exécuter sur un ordinateur moderne lorsque n vaut 1 000 000. Combien de temps ce même ordinateur prendra-t-il pour exécuter l’algorithme 2 ? 10 millisecondes, 4 minutes, 8 minutes, 15 minutes ou plusieurs jours ?

    Montrer/cacher la solution
  • Récursivité

    Vous avez peut-être appris les nombres de Fibonacci lors de vos leçons de mathématiques. Le 0-ième nombre de Fibonacci est 0, et le 1-er est 1. Pour tout n > 1, le n-ième nombre de Fibonacci est la somme du (n−1)-ième et (n−2)-ième nombres de Fibonacci. Les huit premiers nombres de Fibonacci sont donc 0, 1, 1, 2, 3, 5, 8, 13. Les nombres de Fibonacci peuvent être définis mathématiquement comme suit.

    Fib(0) = 0
    Fib(1) = 1
    Fib(n) = Fib(n-1) + Fib(n-2), pour n > 1
    

    C’est ce que l’on nomme une fonction récursive: la fonction Fib est définie en fonction d’elle-même. Dans un langage de programmation, il est facilement possible de transcrire une telle définition comme une fonction qui s’appelle elle-même:

    Input : n, un nombre naturel, pour lequel nous voulons calculer le nombre de Fibonacci
    Output : le n-ième nombre de Fibonacci
    
    Fib(n)
    {
      if (n = 0)
      {
        return 0
      }
      else if (n = 1) 
      {
        return 1
      }
      else
      {
        return Fib(n-1) + Fib(n-2)
      }
    }
    
    • Quel est le résultat de l’appel de fonction Fib(9) ?
    • Combien de fois la fonction Fib s’appelle-t-elle elle-même après l’appel à Fib(2) ?
    • Combien de fois la fonction Fib s’appelle-t-elle elle-même après l’appel à Fib(5) ?

    Des informaticiens malins ont trouvé une façon différente (et, espérons-le, meilleure) de calculer les nombres de Fibonacci. Nous pouvons l’exprimer dans un langage de programmation sous la forme de la fonction récursive BetterFib suivante:

    Input : n, un nombre entier positif, pour lequel nous voulons calculer le nombre de Fibonacci
            a, un nombre entier positif qui est initialement 0
            b, un nombre entier positif qui est initialement 1
            i, un nombre entier positif qui est initialement 0
    Output : le n-ième nombre de Fibonacci
    
    BetterFib(n, a, b, i) {
      if (i = n)
      {
        return a
      }
      else
      {
        return BetterFib(n, b, a+b, i+1)
      }
    }
    

    Pour calculer le n-ième nombre de Fibonacci, on appelle BetterFib(n,0,1,0). On comprend sans doute mieux le code ci-dessus quand on se rend compte que, lors de chaque appel à BetterFib, a contient toujours le i-ième nombre de Fibonacci, et b contient toujours le (i+1)-ième nombre de Fibonacci.

    • Combien de fois la fonction BetterFib s’appelle-t-elle elle-même après l’appel à BetterFib(2,0,1,0) ?
    • Combien de fois la fonction BetterFib s’appelle-t-elle elle-même après l’appel à BetterFib(5,0,1,0) ?
    Montrer/cacher la solution

Des questions ?

Contactez-nous !